首页> 外文OA文献 >Classifying Human Emotional States using Wireless EEG based ERP and Functional Connectivity Measures
【2h】

Classifying Human Emotional States using Wireless EEG based ERP and Functional Connectivity Measures

机译:基于无线脑电图的人类情绪状态分类 ERp和功能连接措施

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present a systematic exploration to determine several EEG based features for classifying three emotional states (happy, fearful and neutral) pertaining to face perception. EEG data were acquired through a 19-channel wireless system from eight adults under two conditions – in a constrained position and involving head-body movements. The movement EEG data was pre-processed using an artifact reduction algorithm and both datasets were processed to extract neurophysiological features – ERP components and from functional connectivity measures. The functional connectivity measures were processed using a brain connectivity toolbox and gray level co-occurrence matrices to generate a total of 463 features. The feature set was split into: training dataset comprising of constrained and movement EEG data and test dataset comprising of only movement EEG data.A retrospective cross-validation approach was run on the training dataset in conjunction with two classifiers (LDA and SVM) and the ranked feature set, to select the best features using a sequential forward selection algorithm. The best features were further used to prospectively classify the three emotions in the test dataset. Our results show that we can successfully classify the emotions using LDA with an accuracy of 89% and using top 17 ranked features.
机译:在本文中,我们进行了系统的探索,以确定几种基于EEG的特征,以对与面部感知有关的三种情绪状态(快乐,恐惧和中立)进行分类。 EEG数据是通过19个通道的无线系统从八名成年人在两种情况下获得的:处于受约束的位置以及涉及头身运动的情况。运动EEG数据使用伪影减少算法进行了预处理,并且两个数据集都经过处理以提取神经生理特征-ERP组件和功能连接性度量。使用大脑连通性工具箱和灰度共现矩阵对功能连通性度量进行处理,以生成总共463个特征。该功能集分为:训练数据集(包含受约束的运动EEG数据)和测试数据集(仅包含运动EEG数据)。追溯交叉验证方法与两个分类器(LDA和SVM)一起用于训练数据集。排序功能集,以使用顺序前向选择算法选择最佳功能。最好的功能进一步用于对测试数据集中的三种情绪进行前瞻性分类。我们的结果表明,我们可以使用LDA以89%的准确度并使用排名前17位的功能成功地对情绪进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号